〈红外应用〉

# 涤纶晶体结构三级红外光谱研究

武玉洁<sup>1</sup>,常明<sup>2</sup>,杨若冰<sup>2</sup>,胡梦璇<sup>2</sup>,董妍<sup>2</sup>,于宏伟<sup>2</sup>

(1. 河北一品制药股份有限公司,河北 石家庄 052165; 2. 石家庄学院 化工学院,河北 石家庄 050035)

**摘要:**采用红外(IR)光谱研究涤纶的晶体结构(v<sub>-crystal-\*\*</sub>)。研究发现:涤纶主要存在着 v<sub>-crystal-1.\*\*</sub>(1335 cm<sup>-1</sup>)、v<sub>-crystal-2-\*\*</sub>(969 cm<sup>-1</sup>)和 v<sub>-crystal-3-\*\*</sub>(847 cm<sup>-1</sup>)等3大晶体特征吸收谱带。采用变温 红外(TD-IR)光谱开展了涤纶的晶体结构热稳定性研究。实验发现:在353~393K的温度范围内, 随着测定温度的升高,涤纶 v<sub>-crystal-\*\*</sub>对应的吸收强度及频率有明显的改变。这主要是因为玻璃化温度 后,会进一步破坏涤纶晶体的结构。采用二维红外(2D-IR)光谱,以涤纶 v<sub>-crystal</sub>为研究对象,进一 步开展了涤纶玻璃化转变研究机理。在加热过程中,涤纶大分子链表现出不同的运动状态。玻璃化温 度前(313~343 K),涤纶分子发生分子运动的冻结,玻璃化温度后(353~393 K)涤纶即将进入高 弹态。本项研究拓展了三级 IR光谱(包括: IR光谱,TD-IR光谱和2D-IR光谱)在涤纶结构,热稳 定性及玻璃化转变的应用研究范围。

关键词:涤纶;红外光谱;晶体;热稳定性;玻璃化转变 中图分类号:O434.3 文献标识码:A 文章编号:1001-8891(2020)06-0589-09

## **Three-step Infrared Spectrum of Dacron Crystal Structure**

WU Yujie<sup>1</sup>, CHANG Ming<sup>2</sup>, YANG Ruobing<sup>2</sup>, HU Mengxuan<sup>2</sup>, DONG Yan<sup>2</sup>, YU Hongwei<sup>2</sup> (1. Hebei Yipin Pharmaceutical Co., LTD., Shijiazhuang 052165, China;
2. School of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China)

**Abstract:** The dacron crystal structures ( $v_{-crystal-dacron}$ ) were studied by infrared (IR) spectrum, for instance,  $v_{-crystal-1-dacron}(1335 \text{ cm}^{-1})$ ,  $v_{-crystal-2-dacron}(969 \text{ cm}^{-1})$ , and  $v_{-crystal-3-dacron}(847 \text{ cm}^{-1})$ . In addition, the dacron thermostability was studied by temperature-dependent infrared(TD-IR) spectrum. We obtained that the corresponding absorption intensity and frequency of dacron  $v_{-crystal-dacron}$  were changed (353-393 K) because its crystal structure was destroyed by the temperature. We further studied the glass transition of dacron  $v_{-crystal-dacron}$  was by two-dimensional infrared(2D-IR) spectrum. During heating, the dacron macromolecular chain showed different motion states. The dacron molecules froze in molecular motion before the glass transition temperature (313-343 K); however, these molecules nearly entered a high elastic state after the glass transition temperature (353-393 K). This study demonstrated the key roles of three-step infrared spectrum (including IR spectrum, TD-IR spectrum, and 2D-IR spectrum) in the analysis of structure, thermostability, and glass transition of the important polymer material(dacron).

Key words: dacron, infrared spectrum, crystal, thermostability, glass transition

0 引言

涤纶(dacron)具有高度结晶性,在纺织科学<sup>[1-2]</sup>、

电器工程<sup>[3-4]</sup>、建筑科学<sup>[5-6]</sup>等领域中有着广泛的应用。 涤纶的优良性能与其特殊理化结构有关<sup>[7-10]</sup>。IR 光谱 可应用于高分子结构研究中<sup>[11-13]</sup>,但由于传统 IR 光

通信作者: 于宏伟(1979-),男,汉族,黑龙江人,工学博士,副教授,现主要从事高分子材料红外光谱研究工作。E-mail: yhw0411@163.com。 基金项目: 河北省麻醉药技术创新中心自研项目(2019),石家庄市麻醉药技术创新中心自研项目(2019),石家庄市藁城区科学技术研究与发展 计划课题(G201804)。

收稿日期: 2019-08-02; 修订日期: 2019-11-12.

作者简介:武玉洁(1975-),女,汉族,山西人,高级工程师,主要从事药物包材红外光谱检测相关研究工作。

| 第42卷 第6期 | 红外技术                | Vol.42 | No.6 |
|----------|---------------------|--------|------|
| 2020年6月  | Infrared Technology | June   | 2020 |

谱的谱图分辨能力不高,并不能提供更多有价值的光 谱信息。而 2D-IR 光谱<sup>[14-16]</sup>谱图分辨能力要优于传统 的 IR 光谱,并能提供更丰富的光谱信息。本文通过 三级红外光谱技术,以涤纶晶体吸收谱带(v<sub>-crystal-骤</sub>) 为研究对象,分别开展了涤纶晶体结构的热稳定性及 玻璃化转变的研究,为涤纶的改性研究提供了有意义 的科学借鉴。

1 材料与方法

#### 1.1 材料

涤纶(可口可乐瓶,采购于石家庄高新区北国超市长江店,中粮河北可口可乐饮料有限公司 2014-09-11生产,批号1743HB01)。

### 1.2 仪器与设备

Spectrum 100 型红外光谱仪(美国 PE 公司); Golden Gate 型 ATR-FTIR 变温附件(英国 Specac 公司); WEST 6100<sup>+</sup>型 ATR-FTIR 变温控件(英国 Specac 公司)。

1.3 方法

1.3.1 红外光谱仪操作条件

每次实验,以空气为背景,涤纶样品进行 8 次扫 描累加;测定频率范围 4000~600 cm<sup>-1</sup>,测温范围 313~393 K,变温步长 10 K。

1.3.2 数据获得及处理

涤纶样品 IR 光谱及 TD-IR 光谱数据获得采用 Spectrum v.6.3.5 操作软件(其中二阶 IR 光谱的平滑 点为 13);涤纶样品 2D-IR 光谱数据获得采用 TD Version 4.2 操作软件。

### 2 结果与讨论

### 2.1 涤纶的 IR 光谱研究

在 4000~600 cm<sup>-1</sup> 的频率范围内, 首先开展了涤



纶的 IR 光谱研究(图 1),涤纶主要包括 3 大晶体特 征吸收谱带(v<sub>-crystal-i\*\*</sub>),包括: "涤纶第一晶体特 征吸收谱带"(1335 cm<sup>-1</sup>, v<sub>-crystal-1-\*\*</sub>)、"涤纶第 二晶体特征吸收谱带"(969 cm<sup>-1</sup>, v<sub>-crystal-2-\*\*</sub>)和"涤 纶第三晶体特征吸收谱带"(847 cm<sup>-1</sup>, v<sub>-crystal-3-\*\*</sub>), 涤纶其他官能团的光谱信息在我们课题组之前的研 究论文里已有详细报道<sup>[17-18]</sup>,本文不再详述。

### 2.2 涤纶晶体特征吸收谱带的 TD-IR (temperature -dependent infrared) 光谱研究

涤纶是高度结晶的高聚物,因此以涤纶的玻璃化 温度(*T*g.淋粒)为考查因素,分别开展了*T*g.淋粒以下 (313~343 K)及*T*g.淋粒以上(353~393 K)的涤纶晶 体特征吸收谱带(*v*.crystal.淋粒)的TD-IR光谱研究,并 进一步考查了温度变化对于涤纶晶体结构热稳定性 的影响。

2.2.1 涤纶晶体特征吸收谱带(313~343K)的 TD-IR 光谱研究

在 313~343 K 的温度范围内,首先开展了涤纶 第一晶体特征吸收谱带(v<sub>-crystal-1-below-Tg-</sub><sup>36</sup>)的 TD-IR 光谱的研究(图 2)。实验发现:随着测定温度的升 高,涤纶 v<sub>-crystal-1-below-Tg-</sub><sup>36</sup>对应的吸收频率发生红移, 而相应的吸收强度降低。

在 313~343 K 的温度范围内,进一步开展了涤 纶第二晶体特征吸收谱带(v<sub>-crystal-2-below-Tg-</sub>»%)的 TD-IR 光谱的研究(图 3)。实验发现:随着测定温度的升高,涤纶 v<sub>-crystal-2-below-Tg-</sub>»%的吸收强度降低,但对应的 吸收频率发生红移。

在 313~343 K 的温度范围内,进一步开展了涤 纶第三晶体特征吸收谱带(v<sub>-crystal-3-below-Tg-</sub>※注)的 TD-IR 光谱的研究(图 4)。随着测定温度的升高,涤纶 v<sub>-crystal-3-below-Tg-</sub>※注的吸收强度降低,但对应的吸收频率 发生蓝移。









2.2.2 涤纶晶体特征吸收谱带(353~393K)的 TD-IR 光谱研究

在 353~393K 的温度范围内,首先开展了涤纶第 一晶体特征吸收谱带(v<sub>-crystal-1-above-Tg-骤绝</sub>)的 TD-IR 光 谱的研究(图 5)。随着测定温度的升高,涤纶 v<sub>-crystal-1-above-Tg-骤绝</sub>对应频率发生蓝移,但相应的吸收强 度增加。

在 353~393K 的温度范围内,进一步开展了涤纶 第二晶体特征吸收谱带(v-crystal-2-above-Tg-涨抢)的一维





#### (b) Second derivative TD-IR spectrum





(b) 二阶导数 TD-IR 光谱

(b) Second derivative TD-IR spectrum





(b) 二阶导数 TD-IR 光谱

(b) Second derivative TD-IR spectrum

Fig.4 TD-IR spectrum of dacron(860-830 cm<sup>-1</sup>)

TD-IR 光谱的研究(图 6(a))。随着测定温度的升高, 涤纶 v-crystal-2-above-Tg-<sup>же</sup>的吸收强度降低,但对应的频率 发生明显红移。进一步研究了涤纶第二晶体特征吸收 谱带二阶导数 TD-IR 光谱(图 6(b)),随着测定温度 的升高,涤纶 v-crystal-2-above-Tg-<sup>爆е</sup>对应的吸收频率发生红 移,而相应的强度进一步增加。

在 353~393K 的温度范围内,进一步开展了涤纶 第三晶体特征吸收谱带(v-crystal-3-above-Tg-涨%)的一维 TD-IR 光谱的研究(图 7(a))。随着测定温度的升高,

| 第42卷 第6期 | 红外技术                | Vol.42 | No.6 |
|----------|---------------------|--------|------|
| 2020年6月  | Infrared Technology | June   | 2020 |

涤纶 v-crystal-3-above-Tg-<sup>36</sup>的吸收强度降低,但对应的吸收 频率发生明显蓝移。进一步研究了涤纶第三晶体特征 吸收谱带的二阶导数 TD-IR 光谱(图 7(b)),随着测 定温度的升高,涤纶 v-crystal-3-above-Tg-<sup>36</sup>和应的吸收频率 发生蓝移,而相应的吸收强度略有增加。

研究发现: 在玻璃化转变过程中涤纶晶体 (v-crystal-3-above-Tg-<sup>34</sup>)对应的吸收强度及频率均有明显的 改变(表1)。这主要是因为当测定温度超过 Tg-<sup>34</sup>时, 部分涤纶晶体结构被破坏,从而会导致涤纶 v-crystal-3-above-Tg-<sup>34</sup>7应的吸收强度及频率均产生明显



(a) 一维 TD-IR 光谱

(a) One-dimensional TD-IR spectrum

图 5 涤纶的 TD-IR 光谱(1350~1300 cm<sup>-1</sup>)



(a) 一维 TD-IR 光谱

(a) One-dimensional TD-IR spectrum图 6 涤纶的 TD-IR 光谱 (990~930 cm<sup>-1</sup>)





差异。

### 2.3 涤纶晶体特征吸收谱带的 2D-IR 光谱研究

分别开展了 *T*<sub>g-涨%</sub>以下及 *T*<sub>g-涨%</sub>以上的涤纶晶体特征吸收谱带(*v*<sub>-crystal-涨%</sub>)的 2D-IR 光谱研究,并进一步开展了不同温度下,涤纶晶体结构玻璃化转变的研究。

2.3.1 涤纶晶体特征吸收谱带(313~343K)的 2D-IR 光谱研究

在 313~343 K 的温度范围内,开展了涤纶第一晶





(b) Second derivative TD-IR spectrum















体特征吸收谱带(v-crystal-1-below-Tg-淡纶)的同步 2D-IR 光 谱的研究(图 8(a))。首先在(1330 cm<sup>-1</sup>, 1330 cm<sup>-1</sup>) 和  $(1340 \text{ cm}^{-1}, 1340 \text{ cm}^{-1})$  频率处发现了两个相对强 度较大的交叉峰,则进一步证明该频率处(1330 cm<sup>-1</sup> 和 1340  $\text{cm}^{-1}$ )对应的官能团对于温度变化比较敏感, 此外在(1330 cm<sup>-1</sup>, 1340 cm<sup>-1</sup>)频率处发现了一个相 对强度较大的交叉峰,则说明,该频率处(1330 cm<sup>-1</sup> 和 1340  $\mathrm{cm}^{-1}$ ) 对应的官能团之间存在着较强的分子内 相互作用。进一步开展了涤纶第一晶体特征吸收谱带 的异步 2D-IR 光谱的研究(图 8(b)),在(1330 cm<sup>-1</sup>, 1340 cm<sup>-1</sup>)和(1340 cm<sup>-1</sup>, 1345 cm<sup>-1</sup>)频率处发现 了两个相对强度较大的交叉峰。涤纶第一晶体特征吸 收谱带的 2D-IR 光谱数据证明, 其吸收频率包括: 1345 <sup>涤纶</sup>)和1330 cm<sup>-1</sup>( $v_{-crvstal-1-C-below-Te-涤纶}$ )。根据 NODA 规则[15-16],热扰动下,涤纶第一晶体特征吸收谱带对 应吸收峰变化快慢顺序为: 1330 cm<sup>-1</sup> (v-crystal-1-C-below-Tg- $_{\%\%}) > 1340 \text{ cm}^{-1} (v_{-crvstal-1-B-below-Tg-涤纶}) > 1345 \text{ cm}^{-1}$ 

(V-crystal-1-A-below-Tg-涤纶)。

在 313~343 K 的温度范围内,开展了涤纶第二 晶体特征吸收谱带(v<sub>-crystal-2-below-Tg-</sub><sup>38</sup>%)的同步 2D-IR 光谱的研究(图 9(a))。实验发现,在 969 cm<sup>-1</sup>(v<sub>-crystal-2</sub>) 频率附近,并没有发现明显的自动峰。进一步开展了 涤纶第二晶体特征吸收谱带的异步 2D-IR 光谱的研究 (图 9(b)),在(968 cm<sup>-1</sup>,980 cm<sup>-1</sup>)频率处发现了 一个相对强度较小的交叉峰。涤纶 v<sub>-crystal-2-below-Tg-</sub><sup>38</sup>%的 2D-IR 光谱数据证明,其吸收频率包括:980 cm<sup>-1</sup> (v<sub>-crystal-2-A-below-Tg-</sub><sup>38</sup>%)和 968 cm<sup>-1</sup>(v<sub>-crystal-2-B-below-Tg-</sub><sup>38</sup>%)。 根据 NODA 规则<sup>[15-16]</sup>,热扰动下,涤纶第二晶体特征 吸收谱带对应吸收峰变化快慢顺序为:968 cm<sup>-1</sup> (v<sub>-crystal-2-B-below-Tg-</sub><sup>38</sup>%)。

在 313~343 K 的温度范围内,开展了涤纶第三晶体特征吸收谱带(v<sub>-crystal-3-below-Tg-</sub>»涂)的同步 2D-IR 光谱的研究(图 10(a))。首先在(850 cm<sup>-1</sup>, 850 cm<sup>-1</sup>)频率处发现了一个相对强度不大的交叉峰。进一步开

| そ1 涤纶晶体特征吸收谱带的 | IR 光谱相 | TD-IR 🕇 | 至谱数据 |
|----------------|--------|---------|------|
|----------------|--------|---------|------|

| Table 1 Data IR and TD-IR spectrum of dacron crystal band |                           |                           |                           |                           |
|-----------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                                           | One-dimensional IR        | One-dimensional IR        | Second derivative IR      | Second derivative IR      |
|                                                           | spectrum/cm <sup>-1</sup> | spectrum/cm <sup>-1</sup> | spectrum/cm <sup>-1</sup> | spectrum/cm <sup>-1</sup> |
|                                                           | 313 K(343 K)              | 353 K(393 K)              | 313 K(343 K)              | 353 K(393 K)              |
| Absorption frequency                                      | 1339(1338)↓               | 1338(1338)↑               | 1338(1338)↓               | 1338(1338)↑               |
| Absorption frequency                                      | 972(972)↓                 | 971(970)↓                 | 971(971)↓                 | 971(969)↑                 |
| Absorption frequency                                      | 842(844)↓                 | 844(847)↓                 | 841(841)↓                 | 840(846)↑                 |

注:↑代表随着测定温度的升高,涤纶对应的有机官能团红外吸收强度增加;

↓代表随着测定温度的升高,涤纶对应的有机官能团红外吸收强度降低;

 $\downarrow$ With the increase of temperature, the infrared absorption intensity of the corresponding organic functional group of polyester decreases;



(a) 同步 2D-IR 光谱 (a) Synchronous 2D-IR spectrum
 图 8 涤纶 2D-IR 光谱 (313~343 K)





Note: ↑With the increase of temperature, the infrared absorption intensity of the corresponding organic functional group of polyester increases ;

| 第42卷 第6期 | 红外技术                | Vol.42 | No.6 |
|----------|---------------------|--------|------|
| 2020年6月  | Infrared Technology | June   | 2020 |

展了涤纶第三晶体特征吸收谱带的异步 2D-IR 光谱的 研究(图 10(b)),在(840 cm<sup>-1</sup>,850 cm<sup>-1</sup>)频率处 发现了一个相对强度较小的交叉峰。涤纶第三晶体特 征吸收谱带的 2D-IR 光谱数据证明,其吸收频率包括: 850 cm<sup>-1</sup> ( $v_{-crystal-3-A-below-Tg- ** \pm}$ )和 840 cm<sup>-1</sup> ( $v_{-crystal-3-B-below-Tg- ** \pm}$ )和 840 cm<sup>-1</sup> ( $v_{-crystal-3-B-below-Tg- ** \pm}$ )。根据 NODA 规则<sup>[15-16]</sup>,热扰动 下,涤纶第三晶体特征吸收谱带对应吸收峰变化快慢 顺序为: 840 cm<sup>-1</sup> ( $v_{-crystal-3-B-below-Tg- ** \pm}$ )>850 cm<sup>-1</sup> ( $v_{-crystal-3-A-below-Tg- ** \pm}$ )。

2.3.2 涤纶晶体特征吸收谱带(353~393 K)的 2D-IR 光谱研究

在 353~393 K 的温度范围内,开展了涤纶第一晶体特征吸收谱带(v<sub>-crystal-1-above-Tg-</sub>»%)的同步 2D-IR 光谱的研究(图 11(a))。首先在(1335 cm<sup>-1</sup>, 1335 cm<sup>-1</sup>)频率处发现了一个相对强度较大的交叉峰,而在 1350 cm<sup>-1</sup>~1300 cm<sup>-1</sup> 频率范围内,并没有发现明显的交叉峰。进一步开展了涤纶第一晶体特征吸收谱带的异步 2D-IR 光谱的研究(图 11(b)),在(1335 cm<sup>-1</sup>, 1340 cm<sup>-1</sup>)频率处发现了一个相对强度较大的交叉



(a) 同步 2D-IR 光谱
 (a) Synchronous 2D-IR spectrum
 图 9 涤纶 2D-IR 光谱(313~343 K)



(a) Synchronous 2D-IR spectrum

图 10 涤纶 2D-IR 光谱(313~343 K)

峰。涤纶第一晶体特征吸收谱带的 2D-IR 数据证明, 其吸收频率包括:  $1340 \text{ cm}^{-1}$  ( $v_{\text{crystal-1-A-above-}Tg-rak + 2}$ )和  $1335 \text{ cm}^{-1}$ ( $v_{\text{crystal-1-B-above-}Tg-rak + 2}$ )。根据 NODA 规则<sup>[15-16]</sup>, 热扰动下,涤纶第一晶体特征吸收谱带对应吸收峰变 化快慢顺序为:  $1340 \text{ cm}^{-1}$  ( $v_{\text{crystal-1-A-above-}Tg-rak + 2}$ )>1335 cm<sup>-1</sup> ( $v_{\text{crystal-1-B-above-}Tg-rak + 2}$ )。

在 353~393 K 的温度范围内,开展了涤纶第二 晶体特征吸收谱带(v<sub>-crystal-2-above-Tg-</sub><sup>34</sup>)的同步 2D-IR 光谱的研究(图 12(a))。而在 969 cm<sup>-1</sup>(v<sub>-crystal-2-34</sub>) 频率附近,同样没有发现自动峰。进一步开展了涤纶 第二晶体特征吸收谱带的异步 2D-IR 光谱的研究(图 12(b)),在(972 cm<sup>-1</sup>,984 cm<sup>-1</sup>)频率处发现了一 个相对强度较小的交叉峰。涤纶第二晶体特征吸收谱 带的 2D-IR 数据证明,其吸收频率包括:984 cm<sup>-1</sup> (v<sub>-crystal-2-A-above-Tg-34</sub>)和 972 cm<sup>-1</sup>(v<sub>-crystal-2-B-above-Tg-34</sub>)。 根据 NODA 规则<sup>[15-16]</sup>,热扰动下,涤纶第二晶体特 征吸收谱带对应吸收峰变化快慢顺序为:972 cm<sup>-1</sup> (v<sub>-crystal-2-B-above-Tg-34</sub>)。



(b) 异步 2D-IR 光谱 (b) Asynchronous 2D-IR spectrum Fig.9 2D-IR spectrum of dacron(313-343 K)



(b) 异步 2D-IR 光谱(b) Asynchronous 2D-IR spectrumFig.10 2D-IR spectrum of dacron(313-343 K)

在 353~393 K 的温度范围内,开展了涤纶第三晶体特征吸收谱带(v-crystal-3-above-*T*g-¾٤)的同步 2D-IR 光谱的研究(图 13(a))。首先在(847 cm<sup>-1</sup>, 847 cm<sup>-1</sup>)频率处发现了一个相对强度不大的交叉峰。进一步开展了涤纶第三晶体特征吸收谱带的异步 2D-IR 光谱的研究(图 13(b)),在(838 cm<sup>-1</sup>, 847 cm<sup>-1</sup>)频率处发现了一个相对强度较大的交叉峰。涤纶第三晶体特征吸收谱带的 2D-IR 数据证明,其吸收频率包括:847 cm<sup>-1</sup>(v-crystal-3-A-above-*T*g-¾٤)、和 838 cm<sup>-1</sup>(v-crystal-3-B-above-*T*g-¾٤)。根据 NODA 规则<sup>[15-16]</sup>,热扰动下,涤纶第三晶体特征吸收谱带对应吸收峰变化快慢顺序为:847 cm<sup>-1</sup>(v-crystal-3-A-above-*T*g-¾٤)>838 cm<sup>-1</sup>(v-crystal-3-B-above-*T*g-¾٤)。实验发现涤纶晶体特征吸收谱带(v-crystal-3-B-above-*T*g-¾٤)的



2D-IR 光谱能提供更多的光谱信息(表 2)。研究发现: 不同温度下,涤纶第一晶体特征吸收谱带(v<sub>-crystal-1-\*\*</sub>) 对应的频率及吸收峰变化趋势均有较大的差异。第一 晶体特征吸收谱带频率处对应的吸收峰是涤纶分子 CH<sub>2</sub>反式面外摇摆振动模式(*a*<sub>CH2-反式,\*\*</sub>)。在加热过 程中,涤纶的大分子链表现出不同的运动状态<sup>[9-10]</sup>, 在 *T<sub>g</sub>*<sub>\*\*\*</sub>以下(313~343 K),分子热运动的能量不足 以克服位垒,发生分子运动的冻结。在 *T<sub>g</sub>*<sub>\*\*\*</sub>以上 (353~393 K)内,反映的是涤纶分子链(亚甲基链) 的松弛,在这一过程中,主要是涤纶(亚甲基链)整 链分子取向结构的运动发生变化。随着分子热运动能 量逐渐增加,足以克服内旋转的位垒时,链段运动被 激发,涤纶即将进入高弹态。







(a) 同步 2D-IR 光谱





(b) 异步 2D-IR 光谱(b) Asynchronous 2D-IR spectrum

图 12 涤纶 2D-IR 光谱(353~393 K)

Fig.12 2D-IR spectrum of dacron(353-393 K)





(a) 同步 2D-IR 光谱 (a) Synchronous 2D-IR spectrum
 图 13 涤纶 2D-IR 光谱(353~393 K)

(b) 异步 2D-IR 光谱 (b) Asynchronous 2D-IR spectrum

 $\sim$  393 K) Fig.13 2D-IR spectrum of dacron(353 $\sim$  393 K)

#### 表 2 涤纶晶体特征吸收谱带的 2D-IR 光谱数据及解释

Table 2 Data and interpretation 2D-IR spectrum of dacron crystal band

|                 | 313-343K                                                                                                                   | 353-393K                                                                                                                               |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Synchronous     | $(1330 \mathrm{cm}^{-1}, 1330 \mathrm{cm}^{-1}), (1340 \mathrm{cm}^{-1}, 1340 \mathrm{cm}^{-1}),$                          | $(1335 \text{ cm}^{-1}, 1335 \text{ cm}^{-1}), (847 \text{ cm}^{-1}, 847 \text{ cm}^{-1})$                                             |  |
| 2D-IR spectrum  | $(850 \text{ cm}^{-1}, 850 \text{ cm}^{-1})$                                                                               |                                                                                                                                        |  |
| automatic peaks |                                                                                                                            |                                                                                                                                        |  |
| Synchronous     | $(1330 \text{ cm}^{-1}, 1340 \text{ cm}^{-1})$                                                                             | -                                                                                                                                      |  |
| 2D-IR spectrum  |                                                                                                                            |                                                                                                                                        |  |
| cross peaks     |                                                                                                                            |                                                                                                                                        |  |
| Asynchronous    | $(1330 \text{ cm}^{-1}, 1340 \text{ cm}^{-1}), (1340 \text{ cm}^{-1}, 1345 \text{ cm}^{-1}),$                              | $(1335 \text{ cm}^{-1}, 1340 \text{ cm}^{-1}), (972 \text{ cm}^{-1}, 984 \text{ cm}^{-1}), (838 \text{ cm}^{-1}, 847 \text{ cm}^{-1})$ |  |
| 2D-IR spectrum  | (968 cm <sup>-1</sup> , 980 cm <sup>-1</sup> ),(840 cm <sup>-1</sup> ,850 cm <sup>-1</sup> )                               |                                                                                                                                        |  |
| cross peaks     |                                                                                                                            |                                                                                                                                        |  |
|                 | 1330 cm <sup>-1</sup> ( $v_{-crystal-1-C-below-Tg-dacron}$ )>1340 cm <sup>-1</sup> ( $v_{-crystal-1}$                      | 1340 cm <sup>-1</sup> ( $v_{-crystal-1-A-above-Tg-dacron}$ )>1335 cm <sup>-1</sup> ( $v_{-crystal-1-B-above-Tg-dacron}$ )              |  |
|                 | -B-below-Tg-dacron) > $1345$ cm <sup>-1</sup> ( $v$ -crystal-1-A-below-Tg-dacron);                                         | $972 \text{cm}^{-1}(v_{-\text{crystal-2-B-above-Tg-dacron}}) > 984 \text{ cm}^{-1}(v_{-\text{crystal-2-A-above-Tg-dacron}})$           |  |
|                 | 968 cm <sup>-1</sup> ( $v_{-crystal-2-B-below-Tg-dacron}$ )>980 cm <sup>-1</sup> ( $v_{-crystal-2-A}$                      | 847 cm <sup>-1</sup> ( $v_{-crystal-3-A-above-Tg-dacron}$ )>838cm <sup>-1</sup> ( $v_{-crystal-3-B-above-Tg-dacron}$ )                 |  |
|                 | -below-Tg-dacron);                                                                                                         |                                                                                                                                        |  |
| Expressions     | 840 cm <sup>-1</sup> ( $v_{\text{-crystal-3-B-below-}Tg\text{-dacron}}$ )>850 cm <sup>-1</sup> ( $v_{\text{-crystal-3-A}}$ |                                                                                                                                        |  |
|                 | -below-Tg-dacron)                                                                                                          |                                                                                                                                        |  |
|                 |                                                                                                                            |                                                                                                                                        |  |

注: "-"表示在该频率附近,没有发现涤纶分子明显的吸收峰

Note: "-" In the this frequency, no obvious absorption peaks of polyester molecules were found

### 3 结论

涤纶主要存在着 v<sub>-crystal-1-骤绝</sub>(1335cm<sup>-1</sup>)、v<sub>-crystal-2-</sub> <sup>ж</sup>(969cm<sup>-1</sup>)和 v<sub>-crystal-3-骤</sub>(847cm<sup>-1</sup>)等 3 大晶体 特征吸收谱带。实验发现:在 353~393K 的温度范围 内,随着测定温度的升高,涤纶 v<sub>-crystal-骤</sub>对应的吸收 强度及频率有明显的改变。在加热过程中(313~393 K),涤纶大分子链表现出不同的运动状态。玻璃化 温度前(313~343K)涤纶分子发生分子运动的冻结, 玻璃化温度后(353~393K),涤纶分子即将进入高 弹态。结构,热稳定性及玻璃化转变是高分子材料应 用研究的基础。三级 IR 光谱技术为高分子材料的应 用研究建立了一个新的方法学,具有重要的理论研究 价值。

### 参考文献:

[1] 周洪梅. PTT/PET/羊毛混纺薄花呢的设计与生产[J]. 上海纺织科技, 2018, 46(11): 44-45.

ZHOU Hongmei. Design and production of PTT/PET/wool blended tweed[J]. *Shanghai Textile Science & Technology*, 2018, **46**(11): 44-45.

[2] 张晓利, 巫莹柱, 黄美林, 等. PET 和 PBT 混纺比定量分析的研究[J].
 上海纺织科技, 2016, 44(8): 46-48.

ZHANG Xiaoli, WU Yingzhu, HUANG Meilin. Quantitative analysis of blending ratio of PET and PBT blends[J]. Shanghai Textile Science &

Technology, 2016, 44(8): 46-48.

- [3] 唐荣芝,罗春明,周柯,等. 导热 PET 绝缘背板对光伏组件发电效率 的影响[J]. 绝缘材料, 2017, 50(8): 91-96, 105.
   TANG Rongyi, LUO Chunming, ZHOU Ke, et al. Effect of thermal conductive PET insulation backsheet on generating efficiency of photovoltaic module[J]. *Insulating Materials*, 2017, 50(8): 91-96, 105.
- [4] 倪牮,薛俊明,曹丽冉,等. PET 塑料衬底非晶/微晶硅叠层太阳电池研究[J]. 光电子·激光, 2009, 20(6): 738-741.
   NI Jian, XUE Junming, CAO Liran, et al. Investigation on α-Si/c-Si tandem solar cells deposited on PET polymer substrates[J]. Journal of Optoelectronics Laser, 2009, 20(6): 738-741.
- [5] 张闯,张大伟,赵羽习,等. PET 纤维布加固锈蚀钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2015, 36(S2): 209-215. ZHANG Chuang, ZHANG Dawei, ZHAO Yuxi, et al. Experimental study on seismic behavior of corroded reinforced concrete column wrapped with PET sheet[J]. Journal of Building Structures, 2015, 36(S2): 209-215.
- [6] 梁小雨,张大伟,金伟良,等.聚对苯二甲酸乙二醇酯纤维布约束中 空夹层钢管混凝土柱轴压性能试验研究[J].建筑结构学报,2015, 36(S1): 269-274.

LIANG Xiaoyu, ZHANG Dawei, JIN Weiliang, et al. Experimental study on axial loading behavior of hollow concrete-filled double skin steel tubular wrapped with PET[J]. *Journal of Building Structures*, 2015, **36**(S1): 269-274.

- [7] 于中振,欧玉春,伊静,等. PET/HDPE 共混物的形态结构及力学性能的研究[J]. 高分子材料科学与工程, 1996, 12(2): 63-67.
  YU Zhongzhen, OU Yuchun, YI Jing, et al. Studies on morphology and mechanical properties of PET/HDPE blends[J]. *Polymer Materials Science & Engineering*, 1996, 12(2): 63-67.
- [8] 韩甫田,郭立平,刘平安,等. 半结晶聚酯 (PET) 的二相共存结构的 表征[J]. 物理学报, 2001, 50(6): 1132-1138.
  HAN Futian, GUO Liping, LIU Pingan, et al. Characterization of the two-phase structure in semicrystalline poly(ethylene terephthalate)[J]. *Acta Physica Sinica*, 2001, 50(6): 1132-1138.
- [9] 曾春莲, 胡成龙, 曾尊祥, 等. 变温红外法研究聚对苯二甲酸乙二酯 分子链的松弛运动及其构象转变[J]. 分析测试技术与仪器, 2013, 19(1): 54-59.

ZENG Chunlian, HU Chenglong, ZENG Zunxiang, et al. Dynamic relaxation and conformation of PET molecular chain from amorphous state observed by FTIR[J]. *Analysis and Testing Technology and Instruments*, 2013, **19**(1): 54-59.

[10] 江渊,吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中

的应用[J]. 高分子通报, 2001(2): 62-68.

JIANG Yuan, WU Liheng. Applications of infrared spectroscopy in the structural study of poly (ethylene terephthalate) fibers[J]. *Polymer Bulletin*, 2001(2): 62-68.

- [11] 周向东,陈迎春,蒲泽佳,等. 锦纶用耐久性阻燃剂的合成与应用[J]. 成都纺织高等专科学校学报, 2016, 33(1): 37-41. ZHOU Xiangdong, CHEN Yingchun, PU Zejia, et al. Synthesis and application of durability flame retardant for polyamide[J]. Journal of Chengdu Textile College, 2016, 33(1): 37-41.
- [12] 尉念伦,赵茉含,陈丽云,等.聚苯乙烯变温红外光谱研究[J]. 纺织科学与工程, 2019, 36(1): 129-133.
  YU Nianlun, ZHAO Mohan, CHEN Liyun, et al. Study on variable temperature FT-IR spectrum of polystyrene[J]. Journal of Chengdu Textile College, 2019, 36(1): 129-133.
- [13] 赵莱含,高佳丽,王欣,等. PEEK 变温红外光谱研究[J]. 纺织科学 与工程学报, 2019, 36(2): 105-112.
   ZHAO Mohan, GAO Jiali, WANG Xin, et al. Variable temperature infrared spectroscopy study of PEEK[J]. Journal of Chengdu Textile College, 2019, 36(2): 105-112.
- [14] Noda I. Two-dimensional infrared (2D IR) spectroscopy: theory and applications[J]. Appl. Spectrosc., 1990, 44(4): 550-551.
- [15] Maekwa H, Ge N. Comparative study of electrostatic modes for amide I and amide II modes: linear and two-dimensional infrared spectra[J]. *J. Phys. Chem. B*, 2010, **114**(3): 1434-1446.
- [16] WANG J P. Ab inito-bases all-mode two-dimensional infrared spectroscopy of sugar molecule[J]. J. Phys. Chem. B, 2007, 111(31): 9193-9196.
- [17] 王欣,陈月弯,王淑茹,等.聚对苯二甲酸乙二醇酯 C=O 伸缩振动模式ATR二维相关红外光谱研究[J].光散射学报,2016,28(4):352-359.
  WANG Xin, CHEN Yuewan, WANG Shuru, et al. Fourier transform attenuated total reflection two-dimensional infrared spectroscopy study of polyethylene terephthalate C=O stretch vibration[J]. *Chinese Journal of Light Scattering*, 2016, 28(4): 352-359.
- [18] 于宏伟,解立斌,时甜甜,等.聚对苯二甲酸乙二醇酯变温傅里叶变 换衰减全反射红外光谱研究[J].精细石油化工进展,2015,16(5): 54-57.

YU Hongwei, XIE Libin, SHI Tiantian, et al. Research on polyethylene terephthalate with variable temperature attenuated total reflection Fourier transform infrared spectroscopy[J]. *Advances in Fine Petrochemicals*, 2015, **16**(5): 54-57.